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Abstract-The locations and times of occurrence of internal fractures in Perspex spheres subjected to
localized explosive loading are investigated. An analysis of stress wave reflection from free boundar~es
based on the method of geometrical acoustics is found to give predictions which are in good agreement wIth
results obtained from high speed photographs.

NOTATION

I time
p(t) pressure function

u displacement vector
v particle velocity vector
V jump in particle velocity at the wave front

CL dilatational wave speed
CT distorsional wave speed
Co wave velocity of incident wave
c, wave velocity of reflected P-wave
C2 wave velocity of reflected S-wave
E Young's modulus
x cartesian coordinates, in general

K subscript and superscript referring to the wave front
RK , SK principal radii of curvature of the wave front
Rs, Ss principal radii of curvature of the boundary

¢ scalar potential for irrotational strain
'" vector potential for distorsional strain
A Lame's constant
IL Lame's constant
II Poisson's ratio
p density

T(X) wave function
€ unit vector normal to the wave front

(Il unit vector normal to the boundary
(2), (3) unit vectors tangent to the boundary

Utj stress tensor
80 angle of incidence
81 angle of reflection of the P-wave
82 angle of reflection of the S-wave
r boundary surface

V gradient operator [ = C~l' a~2' a~J]
V2 Laplacian operator (= aa

2

2 +aa\+ aa
2

2).
Xl X2 X3

INTRODUCTION

The propagation of stress discontinuities in an elastic medium has been the subject of a number
of investigations for sometime, and an early contribution in this field is that due to
Friedlander[1]. The relevant theoretical concepts of the topic are also outlined by Keller[2],
and some applications of the ray theory and wave front analysis to the problem of stress wave
propagation through cylindrical and spherical inclusions embedded in an elastic medium can be
found in [3-7]. A comprehensive analysis on the propagation of a plane shock wave front
through a lens-shaped elastic body has recently been reported by Ting and Herrmann [8]. Their
predictions of the displacement at the rear surface of the body were in very good agreement
with the experimental results. At much the same time, Lovell et al. [9] have studied the internal
fracturing behaviour of a Perspex sphere subjected to localised explosive shock loading at one
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pole. Three fairly concentrated regions of fracture were identified in the VICInIty of the
anti-pole. Subsequently, high speed photographs of the development of the fractures were
taken by Silva Gomes et al.[lOl, and the times of their occurrence were determined.

The authors feel that theoretical work on the development of internal fractures due to stress
wave focusing in solids has been rather meagre. It is, however, hoped that the present
investigation would shed some light on how the methods of wave front analysis may be easily
employed to correctly predict the positions and extent of these fractures and even predict the
order in time of their initiation.

ANALYSIS

The situation envisaged is that of a freely supported sphere subjected to a localised
explosive pressure p(t) at one pole Po, Fig. 1. It is assumed that this pressure rises in­
stantaneously to a certain value p and sharply decays to zero. Consequently, a stress

(d) t·2a/Cr
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(e) t 7a/3c r (fl CAUSTICS

Fig. 1. Wave fronts in a sphere of Perspex material (v ~ 0.35) due to a point explosive loading at one pole.
P C (pl-reflected P-wave front and caustic deriving from an incident P-wave. Sp, C/P)-reflected S-wave
f(~ntPand caustic deriving from an incident P-wave. P" C (')-reflected P-wave front and caustic deriving
from an incident S-wave. S" C/')-reflected S-wave front and caustic deriving from an incident S-wave.
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discontinuity is engendered at the boundary which causes surfaces of discontinuity (wave
fronts) to propagate into the interior of the sphere.

In Appendix A, it is shown that those surfaces of discontinuity travel with constant speeds,
and that the jump in the particle velocity across the wave front at any time is related to its value
at the initial wave front by the equation,

v == v: [ROSOJI/2
o RS (I)

where Roand So are the principal radii of curvature of the initial wave front, and Rand S are
the instantaneous radii of principal curvature of the actual wave front at some position along
the same ray.

In a two dimensional problem, where one of the principal radii of curvature, say S, is
infinite, eqn (I) becomes,

[
Ro] 1/2

V== Vo ­
R

For a spherically symmetric wave front as in our case, R == S, we have,

(2)

(3)

Equation (I) governs the propagation of a signal along each ray so long as the medium
remains elastic, homogeneous, isotropic and continuous. When the wave front encounters a
free boundary it is reflected back into the body, resulting in wave fronts of differing magnitude
angles and radii of curvature. The general theory describing the behaviour of the incident and
reflected dilatational and shear wave fronts on and from the boundary is outlined in Appendix
B. It is shown that on each ray a point may be reached within the body where one of the radii
of principal curvature of a reflected wave front vanishes. Equation (1) would dictate that on
such a point the particle velocity, and consequently the stress, becomes singular. The locii of
these singular points are described by eqns (B30) and (B3l) which, in general, define two
distinct geometrical surfaces. When the incident wave front is spherical, and when the
boundary is a surface of revolution, as in our case, the surface described by eqn (B3l) then
degenerates into a straight line coincident with the axis of the boundary. The surface described
by eqn (B30), Le. the locus of the centers of meridional curvature of the reflected wave
front, is usually referred to as the CAUSTIC.

In the case of a homogeneous, isotropic elastic medium subjected to a "point" explosive
loading on its surface, two spherical stress waves will emanate from the point of loading,t Le. a
dilatational wave (P-wave), and a slower moving shear wave (S-wave). On arrival at the
boundary surface, they are reflected back into the interior of the body each giving rise, in
general, to a P-wave and an S-wave. Some successive positions for each wave front at different
times, and the development of caustics for a Perspex sphere (v == 0.35) are shown in Fig. 1. An
initial P-wave incident at a point on the spherical boundary gives rise to a P-wave whose angle
of reflection is the same as that of incidence (see eqn B12) and the corresponding wave front is
denoted Pp ; from the same incident P-wave, a reflected S-wave results in of smaller angle of
reflection (see eqn BI2), and the corresponding wave front is denoted Sp. Similarly, an S-wave
incident at a point on the boundary gives rise to a reflected S-wave whose angle of reflection is
the same as the angle of incidence, denoted S.. and to a P-wave whose angle of reflection is
larger and it is denoted Ps• (There are certain restrictions to this statement but we shall not
pursue them here). The focus for Pp and Ss wave fronts are identical, and they constitute the
fastest and slowest wave combination; the locus of all such focii is the caustic indicated by C/P )

which is the same as C/s
). The focii for Ps (i.e. c.(P» and Sp (i.e. Cp(S» are different, as indicated

in Fig. 1(f).

tRayleigh surface waves are not considered in this paper.
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If, in fact, the detonator gave an instantaneous rise to the pressure then a sharp fronted pulse
would propagate, and the theory would predict that fracture should occur all along the caustic
surface. However, in practice, the rise time of the pressure pulse is finite, and an infinite stress
may not occur at the caustic. Instead, only a stress amplification would be produced which can
cause fracture in the vicinity of the caustics and, in particular, at the uppermost regions and
cusps. In fact, at the regions near the anti-pole, the angle of incidence is small and consequently
the stresses associated with the reflected wave fronts are of higher intensity. Furthermore, in
the vicinity of the cusps of the caustics, not only the meridional radius of curvature of a given
reflected wave front vanishes, also its tangential radius becomes almost zero. Thus a second
effect of stress amplification takes place. Therefore, if at all fractures have to take place, they
are more likely to be expected between the uppermost regions and the cusps of the caustics.
For high and very sharp pressure loading, the fractures may extend to other regions around the
caustics to the extent of peeling out the upper surfaces of the sphere.

EXPERIMENTAL OBSERVATIONS

Spheres of 5.71 and 7.37 cm were machined from commercial grade Perspex acrylic stock.
The material Properties of Perspex are [11], E =: 3.0 X 109 N/m2

, v=: 0.35, and p =

1.19 X 103 Kg/m3
, giving CL = 2011 m/sec and CT = 966 m/sec. The impulsive loading was secured

by energizing I.C.I. electrical detonators bonded to the surface of the specimen, as indicated in
Fig. 2.

For the purpose of observing the formation of fractures, the transparent sphere was placed
between a camera and a flash tube, as illustrated in Fig. 2. The camera used was a Barr and
Stroud ultra high speed type CPS No. 69, the mirror of which can be accelerated to produce a
maximum of 2,000,000 frames/sec. The explosive charge and the flash tube were automatically
fired by the camera. Whenever a fracture appeared inside the specimen, the light would be
diffracted through the region of fracture, and a differential intensity of exposure would be
registered on the film.

Figure 3(a) shows a sequence of photographs taken at a rate of nearly 670,000 frames/sec
("" 1.5 /Lsec between frames) for a 7.37 cm diameter Perspex sphere subjected to a localised
explosive pressure on the periphery. Apart from the fracture beneath the area in direct contact
with the explosive pressure, three other distinct regions of fracture, F-l, F-2, and F-3, can be
observed. The high speed photographs show them to appear at different times in frames 2, 11
and 26, which are shown enlarged in Fig. 3(b). Frame 1 in the sequence corresponds to a time of

Fig. 2. Experimental set up, detonator positioning, and support arrangement.
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Fig. 3. Sequence showing the formation of internal fractures in a 7.37 em diameter Perspex sphere due to a
point explosive loading at one pole. (Framing speed, approx. 670,000 frames/sec).

47.5 fLsec after detonation. The actual shape and position of the fractures were determined by
stereophotomicrography and later by cutting each sphere into two halves and making direct
observations on a meridional section of the specimen.

COMPARISONS AND DISCUSSION

The times at which the different fractures took place, as well as their position in relation to
the point of loading, indicate that they are associated with the different types of stress waves
that are generated inside the sphere. Fracture F-I is thought to be initiated by the reflected Pp
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wave but later reinforced by the reflected Ss wave and its position matches well with the upper
region of the caustic Cp

lP ) and c.ls
) in Fig. 1(f). Fracture F-2 we associate with the reflected

shear wave generated by the incident P-wave, i.e. Sp with caustic Cslp), and fracture F-3 with
the reflected P-wave originating from the incident S-wave, Le. Ps with caustic Cp

lS
).

The times at which the different fractures would make their appearance are calculated, and
two magnitudes for each one are given in the table below. The first refer to the time taken by
the wave fronts to reach the upper-most point of the caustic and the second to the time they
take to reach the cusp of the caustic. These times were determined by adding the period which an
incident wave front takes to travel up to the boundary to that taken by the reflected wave front to
reach the caustic. They are evidently in good agreement with what was found experimentally.

Table I.

Fracture

F-I
F-2
F-3

Predicted time of
occurrence after

detonation
(/Lsec)

43-50
62-67
80-86

Time observed
experimentally

(/Lsec)

49
62.5
85

Although the appearance of unbounded stresses, as given from the methods of geometrical
optics, is physically unrealistic, the theoretical predictions may be useful in revealing an effect
of stress amplification at the wave front, and hence giving some indication in identifying the
locations where damage is more likely to occur. The analysis can easily be extended to solids of
other shapes, in particular to solids of revolution. Some experiments have already[12] been
performed on ellipsoids, paraboloids and hyperboloids of revolution, and the results obtained
strongly reinforce the success of the present rudimentary analysis.
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APPENDIX A

The propagation of wave fronts in a homogeneous isotropic elastic solid
As mentioned in the Introduction, the general analytical treatment of wave front analysis and ray theory can be found

in [I] and [2]. However, in order to clarify the most relevant topics involved in this type of analysis, we shall reproduce
here, and in Appendix B, some of its fundamental concepts. These are presented in a simplified manner, orientated towards
the particular situation corresponding to the problem analysed in the present paper.



Internal fractures in spheres due to stress wave focusing 1013

Let u be the displacement vector which can be expressed in terms of a scalar potentiall/J and a vector potential'" in the
form,

where the potentials I/J and ." satisfy the equations,

u=VI/J+Vx", (AI)

and

(A2)

(A3)

where Aand fJ. are the Lame constants, and p is the density.
Since cL > Cn the scalar potentiall/J corresponding to a longitudinal stress pulse is governed by a wave equation with a

greater wave velocity than the distorsional wave described by"'. Hence, for a wave moving into an undisturbed medium,
the region adjacent to the leading wave front corresponds to zero .p, until the instant when the slower distorsional wave
arrives. The former is referred to as the P-wave front and the latter as the S-wave front. If T(X) = t gives tbe position at
time t of either the P-wave front or the S-wave front, it has been established [1-6] that the wave function T(X) must satisfy
the eikonal equation,

(A4)

where C = CL for a P-wave front, and c = CT for an S-wave front.
The orthogonal trajectories of tbe family of wave fronts given by equation T(X) = t are the rays, and for a bomogeneous,

isotropic elastic medium they are straight lines. The unit vector normal to the wave front, i.e. parallel to the ray, is given by,

or, from eqn (A4),

€(X) = CVT(X) (A5)

It can also be shown (see Ref. [2], for example) that jumps in the stress and the particle velocity, Vi = au/at, are related by the
equation,

(A6)

where C represents tbe wave speed, and the jumps in field quantities are indicated by the usual bracket notation. In tbe case of a
P or a dilatational wave, tbe velocity jump is normal to tbe surface of discontinuity and for an S or shear wave, tbe velocity
jump is tangential to the surface of discontinuity.

To consider the determination of the magnitude of the propagating discontinuity, we assume that tbe material is undisturbed
before the wave front arrives. Thus, if the wave front is T(X) = t, the jump in v can be represented by,

V(X) =[v(x, t)]'=<I') =v(x, T(X» (A7)

and, if Vorepresents the amplitude of the pulse at the initial wave front, it can be shown that the jump in particle velocity at tbe
actual wave front is given by,

v= V [ROSO]1/2

° RS
(AS)

where Roand So are the principal radii of curvature of the initial wave front, and Rand S are the principal radii of curvature of
the actual wave front, at position x ~ x(s) on the ray, s being the length of tbe arc measured along tbe ray.

APPENDIX B
The reflection of a spherical wave front from an axially symmetric boundary

Let the boundary r be represented by three equations of the form,

x = g(a, (3) (BI)

and assume that the surface r and its parametrization are such that two distinct tangent vectors and a unit normal at each point
are given by,

"

Ia) X "I~)

"

<a) = g "I~) = g and >(1) = ,.:<;.,..,..--2.=a' ~ ~ 1"la) X "I~)I

respectively. The positive direction of vector (I) is directed to the outside of r. The incident family of wave fronts can be
specified as,

iO)(x) - t ~ 0 (B2)
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183\

and the unit vector normal to the wave front, in the direction of propagation, is

For an incident P-wave, we have

Silll xylOl = 0, with CI) = ('"

and for an incident S-wave,

(1)1. ylOI =O. with Co = Cr,

184)

where V'O) represents the incident signal at the boundary.
When the incident wave front reaches the boundary, it can no longer be assumed that only the original P or S wave is

present in the medium, It is well known that when a ray is incident upon a free boundary, it produces, in general, two reflected
rays-one corresponding to a dilational wave, and the other to a shear or distorsional wave. If these two reflected wave fronts
are represented by equations of the form,

r'KI(x) = t, with K = 1,2,

the wave functions rIK1(x) and the unit normals S'KI are determined by,

If yO) and y(21 represent the P and S reflected signals, respectively, we have,

("XV"'=O with C,=C,

and

IB5)

(B6)

CB8)

As both reflected wave fronts emerge from the intersection of the incident wave front with the boundary r we can write, from
eqn (BI),

r(KI(g(a, (3)) = rlOl(g(a, (3)), with K = I, 2. (89)

Also, since the wave fronts always are joined at surface r. and because their directional derivatives must be equal, then

or,

IBIO)

which implies that the vector in brackets must be parallel to (Ii, and therefore there exists a scalar UK such that

IB11)

i.e. all three wave normals t KI (with K = 0, I, 2) and the normal to the boundary, (Iii, are coplanar. The relative positions of
these vectors are illustrated in Fig. 4, The unit vector (21, in the same plane, is tangent to r and its direction is defined by the
angle 110(0"" 110 "" 1T/2), such that S(Ol • ( 2

) = sin 110, From Fig. 4 it can be deduced that,

and, by taking the scalar product of each equation in (Bl1) with r ll and r 21
, it follows,

sin OK _ sin 110 . h K - 1 2-----, WIt -,
CK Co

and

Also, from Fig. 4,

(BI2)

IB13)

1814)



Internal fractures in spheres due to stress wave focusing

Fig. 4. Wave normals at the boundary.

and thus, from eqns (B7) and (B8), we get

and

1015

(BI5)

(BI6)

where (-3) =(-I) x (-2) and a I' a2' f3, are three parameters to be calculated from the boundary conditions. The incident signal V(O)

can also be resolved in the above manner,

(BI7)

or,
(BI8)

for an incident P-wave or an incident S-wave, respectively.
The coefficients a" a2' and f3 in eqns (BI5) and (BI6) can be determined from the condition of zero stress at the free

boundary, and they are found to be
(a) for an incident P-wave

(b) for an incident S-wave

f3 =0

_ [c ,2 cos2282+c/ sin 282sin 280]
a. - - ao c/ cos2282- c/ sin 282sin 280

_ [ 2C,C2 cos 282sin 280 J
a2 - ao C12cos2 282- c/ sin 282sin 280

f3 = f30

a = - a [ 2CI C2 cos 280sin 280 J
• 0 C,2 cos2280- c/ sin 281 sin 280

= _ [c/ cos2280+C2
2 sin 28, sin 280J

a2 ao c,2cos2290-c/sin28,sin290'

(BI9)

(B20)

At this stage we are able thus to calculate the reflected signals at points on the boundary surface. The ratio of the amplitudes
of the reflected signals to the amplitude of the incident signal depends on the angle of incidence, and in Fig. 5curves are plotted
for a material such as Perspex, which has a Poisson's ratio of 0.35. For this material, it is found that the VO)I Y<0) curve for an
incident shear wave terminates at an angle 26.68° above which no dilatational wave is reflected.

To investigate the response of the reflected signals along each ray, we need to calculate the radii of principal curvature of the
reflected wave fronts. Referring to Fig. 6, let Rs and Robe the radii of curvature on B of the boundary and of the incident wave
front, respectively. At the same point B, represent by RK (K = 1, 2) the radii of curvature of the reflected wave fronts.
Considering a neighboring point B' on r, the angle of reflection at this point is

and

!J.9 BN /19 =BB'
o=~' Rs '

~ (/18
0

-!J.9) +/18 =B'M
d90 RK

BN = BB' cos 90 and B'M = - BB' cos 9K

(B21)

(B22)

(B23)

(B24)
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Fig. 5. Amplitudes of reflected dilatational and distortional waves at different angle~ of incidence, for
v = 0.35. (a) Incident P-wave. (b) Incident S-wave.
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Fig. 6. Reflection geometry of two neighbouring rays.

Also, from eqn (B 12), it follows that

(B25)

and combination of eqns (B21)-(B25) leads to,

R - _ [tan 9K(COS 90 _J...) J...J-1
9

K - 9 R R + R cos K'tan 0 0 S S

(B26)

Equation (B26) gives the position of the centre of curvature of the reflected wave front at point B on the boundary. This centre
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lies on the corresponding ray at algebraic distance RK measured from B towards the direction of propagation of the reflected
wave. At any point F on the reflected ray, the radius of curvature is given by,

(B27)

The problem under analysis is one of a class in which a spherical incident wave front is reflected at a surface of
revolution and whose centre is on the axis of symmetry. In this case, the reftected wave fronts are also surfaces of
revolution about the same axis, and the quantity given by equation (B26) is its meridional radius of curvature. The centre
of tangential curvature lies on the axis of revolution, and a simple geometric analysis yields, see Fig. 7,

(B28)

Along the reftected ray, at point F, the tangential radius of curvature is given by,

(B29)

and the jump in particle velocity at point F can now be calculated by using eqn (A8).

/"
/

~---

Fig.7. Tangential radii of curvature.

From eqns (B27) and (B29) it transpires that on each ray, a point C may be reached where one of the radii of principal
curvature of the reflected wave front vanishes, i.e.

or

BC=RK

BC=SK'

(B30)

(B31)

The locus of points C as given by eqn (B30) is the caustic. For an axisymmetric solid and for a spherical incident wave
front centered on the axis of symmetry, the caustic is a surface of revolution about the same axis. The meridional section
of the caustic can be easily obtained by use of eqns (B 12) and (B26). Equation (B 12) gives the direction of the reflected ray
at each point on the boundary, and eqn (B26) determines the distance from the caustic to the boundary measured along the
ray.


